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A separable model of N interacting particles, in which disjoint pairs of particles interact by
arbitrary two-particle potentials while the remaining interactions obey the Hooke law, is dis-
cussed from a perspective of its applications in quantum chemistry. In particular, properties
of three- and four-particle Hookean systems modeling He-like atoms, H2

+ and H2 molecules
and many exotic systems are analyzed. The energy spectra and the structure of the wave-
functions of quasi-exactly solvable Schrödinger equations which result from this analysis are
investigated in some detail.
Keywords: Schrödinger equation; Quasi-exactly solvable models; Separability; Harmonium;
Hookean molecules; Hamiltonian.

Theory of many-electron systems, in particular quantum chemistry, is
based on a set of carefully designed approximations. Some of them as, for
example, the adiabatic approximation or the one-electron model, impose
separability of non-separable multi-dimensional equations. The resulting
equations, though much simpler than the original ones, in general are not
solvable either analytically or numerically. Therefore the next generation of
approximations, usually derived either from the variational principle or
from the perturbation theory, is aimed at deriving equations which are
solvable. The correctness of the approximations is verified by comparing re-
sults of the calculations with experimental data and by checking consis-
tency of results derived from methods based on different approximations.
Limitations of this kind of approach stimulate studies on models which
may be solved analytically supplying a possibility of very precise tests of
flaws and merits of various approximations.

One of the first attempts to find an exactly-solvable model of two parti-
cles interacting by Coulomb forces and confined by an external potential
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resulted in the construction of the so called Hooke atom or harmonium by
Kestner and Sinanoglu1 in 1962. These authors were satisfied by separability
and, not being aware of its quasi-exact solubility, studied the final solutions
numerically. The analytical solutions of the Schrödinger equation describ-
ing harmonium were originally found by Santos2 in 1968 but remained
unnoticed for several decades and the credit for solving the problem of har-
monium has been mostly given to Taut3 who rediscovered this system in
1993. Afterward, studies on the excited states of harmonium as well on the
relations between solutions of the Schrödinger equation for harmonium
and of its analog for two particles with the attractive interaction (a model
of harmonically confined positronium) were performed4,5. A quasi-exactly
solvable model with the interaction potential containing, additionally to
the Coulombic, also a linear term has been constructed by Samanta and
Ghosh6,7. Many other quasi-exactly solvable equations are discussed in a
mathematically oriented work by Bose and Gupta8. Recently a method of
construction of quasi-exactly solvable potentials, based on an inverse
eigenvalue problem, has been formulated9.

It has been noticed very recently that analytically-solvable models of the
hydrogen molecule and of its positive ion can also be constructed10–12.
Models of the so called Hookean molecules may be derived from two sim-
ple properties of quadratic forms: (i) a linear combination of quadratic
forms is a quadratic form and (ii) a linear transformation of the variables
transforms a positive definite quadratic form to the diagonal form with
positive coefficients. The Hookean H2

+ molecule is here considered as a
three-particle system with the Hookean interactions between the electron
and the protons and the Coulombic potential describing the repulsion of
the protons. In a similar way, the Schrödinger equation for harmonium
may be derived as an equation describing the relative motion of a pair of
particles in a system of three interacting particles rather than an equation
for two particles confined in a parabolic potential. It appears that this idea
may be generalized to a system of N particles in which the interactions be-
tween disjoint pairs of particles are described by arbitrary two-particle po-
tentials while the remaining interactions obey the Hooke law13.

In this paper a unified treatment of several systems relevant in quantum-
chemical applications is presented. In particular, properties of three- and
four-particle Hookean systems are analyzed. Quasi-exactly solvable equa-
tions which result from this analysis are discussed in some detail.

Hereafter we use the following conventions concerning the notations: a
boldfaced symbol always corresponds to a vector while the standard one –
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to its length, e.g. ri = |ri|; pi ≡ p(ri) is the momentum operator in the original
coordinates while after a transformation ri → ri′ it is denoted P(ri′). Two-
and more-particle Hamiltonians are denoted H while the one-particle
Hamiltonians are denoted hx with index x referring to a specific particle or
pseudo-particle. We use atomic units however masses of particles are always
written explicitly.

A SEPARABLE MODEL OF N INTERACTING PARTICLES

Let us consider an N-particle Hamiltonian
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and r2i–1,2i = |r2i–1 – r2i|. The remaining symbols have their usual meaning.
The following theorem is valid13.

Theorem: The N-particle Hamiltonian (1) may be decoupled to N one-
particle Hamiltonians if certain relations between the masses mi of the par-
ticles and the coefficients aij, the separability conditions, are fulfilled. Out
of these equations, one describes the free motion of the center of the mass
and K describe the relative motion of the pairs of particles {1,2}, {3,4}, ...,
{2K – 1,2K}, interacting by the potentials V(r2i–1,2i), i = 1, 2, ..., K. The re-
maining N – K – 1 equations describe a set of spherical harmonic oscillators
in properly constructed normal coordinates.

The special cases of N = 3, K = 1 and N = 4, K = 2, are of a particular inter-
est and will be considered in the next two sections.

THREE PARTICLES

In the case of N = 3 and K = 1, Hamiltonian (1) may correspond to the
Hookean atom (harmonium), to the Hookean H2

+ molecule, and to many
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exotic systems composed of three particles with one pair interacting by a
potential V(r) and two pairs according to the Hooke law. Though taking
three different masses does not obstruct the separability12,13, we shall as-
sume that m1 = m2 = m, to cover the most interesting cases of harmonium
and Hookean H2

+ . A detailed analysis of mathematical properties of the
general problem of three particles may be found in a recent work by Ugalde
et al.12. Thus, the Hamiltonian may be written as
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where rij = |ri – rj| and a is a constant.
The transformation r12 = r1 – r2,
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describes the relative motion of particles 1 and 2, and
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describes the relative motion of particle 3 and the mass center of particles {1,2}.
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Since we are interested in the relative motion of the particles, it is conve-
nient to set the origin of the coordinate system at the center of the mass,
i.e. to set R0 = 0. Then,

r r r R r1 2
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3 1
2

3+ = − =
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m
tand (9)
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Let us assume that particles 1 and 2 are indistinguishable fermions while
the third particle is different. If we choose the wavefunction to be an eigen-
function of the two-fermion spin operators S2 and Sz, then the orbital part
of the total wavefunction has to be either symmetric (two-particle singlet)
or antisymmetric (two-particle triplet) with respect to the transposition P12
of r1 and r2. The potentials in both h1(r12) and h3(r3) are spherically sym-
metric. Therefore, after the elimination of the center of mass, the orbital
part of the wavefunction may be written as
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and
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The eigenvalues of h3 may be expressed by the well known solutions of
Eq. (20):

E
a

a
m mνλ νλµ

ε ν λ( ) ( )3 3

3

1 1
2

2
3
2

= = + + +





. (22)

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 10, pp. 1372–1390

Quasi-Exactly Solvable Models 1377



Solutions of Eq. (19) depend on the form of V. In particular, if V(r12) =
ζ/r12 (Coulomb interaction between particles 1 and 2), Eq. (19) reads

− + + + +
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Then, the dependence of the solutions of the three-particle problem on the
parameters describing the system (masses of the particles and interaction
potential parameters a and ζ) may be effectively reduced to the parameter-
dependent scaling of the coordinates and an explicit dependence on only one
parameter:

~
ζ.

One of interesting aspects of this model is a simple dependence of its so-
lutions on the masses of the particles. First let us consider the dependence
on m3. The eigenvalue problem of h1, i.e. the relative motion of particles 1
and 2, is m3-independent. After scaling of r3, as given by Eq. (18), the eigen-
value problem of h3 reduces to the parameter-independent Eq. (20). The
scaling parameter, q = m3µ–3/4(2a)1/2, monotonically increases with increas-
ing m3 and approaches ∞ if m3 → ∞. This means that increasing m3 implies
reduction of all dimensions of the system described by r3 proportionally
to q. In particular, the width of the Gaussian density distribution corre-
sponding to the ground state becomes smaller (the particle is more local-
ized) if m3 increases, approaching a delta-type distribution if m3 → ∞. At the
limit of m3 → ∞ we get the standard model of two particles in a harmonic
confinement interacting by the potential V and described by h1. In particu-
lar, if V ~ 1/r12 this model represents harmonium1–5. As one can see from
Eq. (22), the increase of m3 to ∞ results in a monotonic decrease of the sepa-
ration between the neighboring energy levels in the spectrum of h3 to the
limit value a/ 2m.

The dependence on m is more interesting since both eigenvalue equa-
tions, (19) and (20), contain this parameter. In the case of Eq. (20), as-
suming that a is m-independent, for m → ∞, the scaling parameter q mono-
tonically decreases to the limit value m a3

1 4 1 22/ /( ) . The relative motion of par-
ticles 1 and 2 is described by Eq. (19) and, in the special case of the
Coulombic interaction, by Eq. (23). If a is m-independent then the scaling
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parameter is proportional to m1/4 (cf. Eq. (18)). However, if a2 = mω2/2 then
the scaling changes to m1/2. In both cases increasing m implies reduction of
all dimensions (proportionally either to m1/4 or to m1/2). The interaction
(ζ ≠ 0) modifies this simple rule, but its general character is retained. In
Fig. 1 the ground state radial wavefunction φ00(r12) is plotted versus r12 for
several values of m assuming that a2 = mω2/2. As one can see, heavy parti-
cles are strongly localized. The degree of this localization may be used as a
measure of the validity of the Born–Oppenheimer approximation. In the
Born–Oppenheimer limit the nuclei are fully localized, i.e. their density dis-
tribution is described by the Dirac delta (note that in Fig. 1 wavefunctions
rather than densities are displayed).

At the limit of m → ∞ we get the Born–Oppenheimer model of the
Hookean H2

+ molecule. In this case t = 1 and Eqs (6), (11) and (12) yield

H H
p

WBO ( ; ) lim ( , ) ( )r r r r12 3 12 3
3
2

3

2
3
2

122
2= = + +

→ ∞m m
a r r (25)

where, in this context, r12 is a parameter equal to a fixed separation be-
tween the nuclei and
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FIG. 1
The ground state radial wavefunction φ00(r12) plotted versus the interparticle distance r12
for three masses of the particles corresponding to electron (m = 1), muon (m = 207) and proton
(m = 1836). In all cases a2 = m/8. Solid and dotted lines correspond to ζ = 1 and 0, respectively
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Since in HBO only additive r12-dependent terms are present, its eigen-
functions do not depend on r12. More precisely,
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clear motion equation. The eigenvalue equation for the nuclear motion
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Now, combining Eqs (6), (15), (26), and (28), one can readily get

E E t Enl, nlνλ νλ
BO (1) (3)= + −1 (31)

and the wavefunction is given by Eq. (29). By comparing Eqs (30) and (15)
we can easily see that

Φ Φnlm nlml l
( ) ( )r r12 12= BO . (32)
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Similarly, from Eqs (27), (29), (12) and (15) results that

Ξ Ξνλµ νλµλ λ
( ) ( )/ /r r3

9 4 3 2
3= t tBO . (33)

According to Eq. (29), in the the Hookean molecule the electronic and
the nuclear degrees of freedom (described, respectively, by r3 and by r12) are
decoupled. Therefore, in this case, the model referred to as the adiabatic
approximation15 is exact. However, the motion of the system and its prop-
erties depend on the masses of the particles (cf. Fig. 1 and Eq. (33)). In par-
ticular, an analysis of the mass density distribution may help to understand
how the molecular and the atomic shapes are transformed to each other
when the masses of the particles change in an appropriate way16. If the
mass density operator for particle {3} is defined as
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where, for simplicity, the quantum numbers have been omitted. In the case
of particles {1,2}

$( ; , ) [ ( ) ( )]ρ δ δz r r z r z r1 2 1 2m m= − + − . (36)

According to Eq. (9)
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m
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m

m
, . (37)

Consequently, the distribution of the density of mass of the {1,2} pair is
given by a convolution of |Φ|2 and |Ξ|2:
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If m → ∞ then
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As one can easily check using Eqs (38) and (39),
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The mass dependence in three-particle Hookean systems has also been
discussed in refs10–12,16.

FOUR PARTICLES

In general, the case of N = 4, K = 2 is similar to the one discussed in the pre-
ceding section. The four-particle Hamiltonian with m1 = m2 = ma and m3 =
m4 = mb is decoupled by the following transformation of coordinates11–13:
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with µ = mamb/(ma + mb). Here h0 corresponds to the motion of the center
of the mass, hi, i = 1, 2 describe the relative motion of two pairs of particles
interacting by potentials Vi(r2i–1,2i) and h3 describes the relative motion of
the centers of mass of the pairs {1,2} and {3,4}. If one of the pairs, say {3,4},
describes heavy particles (nuclei) then we can apply the Born–Oppenheimer
approximation, i.e. fix coordinates of these particles. However, this does
not affect the relative motion of two remaining particles since the relative
motions of the two pairs of particles are separated. Consequently, similarly
as in the three-particle case, the adiabatic description is, effectively, exact.

ONE-PARTICLE EQUATIONS

All eigenvalue equations of the one-particle Hamiltonians derived from the
models discussed in the preceding sections are spherically symmetric. Then,
the angular parts are separable from the radial ones and the angular eigen-
functions are equal to the spherical harmonics in appropriate angular coor-
dinates. The radial equations corresponding to h0 (Eqs (5) and (41)) describe
the free motion of the center of the mass. The ones corresponding to h3
(Eqs (7) and (43)) describe harmonic motion related to the Hooke force.
Both equations are analytically solvable and their solution is a textbook ex-
ercise. The analytical solubility of equations describing the relative motion
of particles {1,2} and, in the case of N = 4, also {3,4} (one-particle
Hamiltonians h1 and h2, as defined in Eqs (6) and (42)) depends on the
form of V. The equations are exactly (analytically) solvable if V(r12) ~ r12

2−

(Calogero model17) or V(r12) ~ r12
2 (Moshinsky model18). In many other cases

only some eigenfunctions (and eigenvalues) may be expressed analytically
(the best known example is harmonium). These cases are referred to as quasi-
exactly solvable.

Let us consider a particle of mass m in an effective spherically-symmetric
potential

V Veff ( )
( )

( )r
l l

mr
r= + +1

2 2
(44)

composed of the centrifugal term and of an external potential V(r). The cor-
responding radial Schrödinger equation reads
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where φnl(r) is the radial part of the wavefunction
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If the external potential supports bound states, Eq. (45) may be solved
numerically using standard procedures. In some cases (an extensive set of
examples has been discussed by Bose and Gupta8) the equation may be
solved analytically. In this context the external potential

V( ) ( )r
r

m
r r= + −δζ ω δ

2
2

2 e (47)

where m > 0, ω ≥ 0, ζ ≥ 0, δ = ±1, is of a particular interest. It corresponds to
one of equations discussed by Bose and Gupta8 and was analyzed by Ghosh
and Samantha6,7. Special cases of this potential describe a large set of im-
portant model systems. In particular, ω = 0, δ = –1 correspond to a H-like
atom, ζ = re = 0 to the harmonic oscillator, ζ = 0 to the nuclear motion of
a diatomic molecule in the harmonic approximation. If re = 0 then V(r) cor-
responds to harmonium (if δ = 1) or to positronium confined in a parabolic
potential (if δ = –1). The shapes of the potential in these two cases and the
corresponding energy levels are shown in Fig. 2.

If we set r = r12 then Eq. (45) is equivalent to the radial part of the
eigenvalue equation of h1 (6) (and also of h1 or h2 defined in Eq. (42)), with
properly selected V and recalibrated constants. Then, Eq. (45) also describes
the relative motion of particles interacting by a two-particle potential V(r12)
in the model systems discussed in preceding sections.

Eq. (45), with the external potential (47), depends on four parameters:
m, ω, ζ and re. For all values of these parameters, with the only restriction
ω > 0 and m > 0, its square-integrable solutions may be expressed as

φ ω δ
nl

l m r r
nlr r e P r( ) ~ ( )( ) /+ − −1 22

e (48)

where P rnl
δ ( ) is a function which does not influence the asymptotic behavior

for both r → 0 and r → ∞. The set of eigenfunctions is complete and the
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energy spectrum is discrete19. In general the energy depends on the choice
of δ. Therefore we set Enl = Enl

δ . However, in the analytically solvable cases4,9

Enl
+ = Enl

− . Besides, in the analytically solvable cases P rnl
δ ( ) is a polynomial.

Since the transformation δ → –δ is equivalent to the transformation r → –r
(cf. Eqs (45) and (47)), the polynomial may be expressed as
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FIG. 2
Shapes of the effective potential Veff(r) versus rω1/2 and the energy levels of confined
positronium (panels A) and of harmonium (panels B). The plots correspond to the eigenvalues
of Eq. (45), with the external potential (47), scaled by 1/ω, with m = 1/2, re = 0, ζ = 1 and δ = –1
(panels A), δ = +1 (panels B). The values of ω correspond to analytically solvable cases with l =
0, 1 and p = 1, 2. The analytical energies, marked by the thick lines, in the case of harmonium
are the same as the ones in the case of the confined positronium



P r a rnl i
nl i

i

p
δ δ( ) ( )( )=

=
∑

0

. (49)

Consequently, in the analytically solvable cases, Eq. (45) with potential
(47) may be rewritten as

− + + + + − −





1

2
1

2 2

2

2 2

2
2

m x
l l

mx x
m

x r E xnl nl

d
d

e

( )
( ) (

ζ ω φ ) = 0 (50)

where x = ±r ∈ (–∞,∞) and due to the boundary conditions at r = 0, φnl(0) = 0.
The resulting wavefunction, φnl(x), corresponds to a system with repulsive/
attractive Coulomb interaction if x > 0/x < 0. In particular, if re = 0 and ζ = 1
then the part of φnl(x) with x ∈ (–∞,0〉 describes confined positronium and
the part with x ∈ 〈 0,∞) describes harmonium.

The coefficients of the polynomial (49) may be determined using the
standard method of Sommerfeld. In this case the substitution of Eqs (48)
and (49) to Eq. (50) leads to the following set of recurrence relations:

B a C a

A a B a C a

A a B a C a

A a B

0 0 1 1

0 0 1 1 2 2

1 1 2 2 3 3

2 2 3

0

0

0

+ =

+ + =

+ + =

+ a C a

A a B a C a

3 4 4

3 3 4 4 5 5

0

0

+ =

+ + =

... ... ...

(51)

with

A m E i l

B m r i l

C i i l

i

i

i

= − + +

= + + −

= + +

2 3 2

2 1

2 1

[ ( / )]

[ ( ) ]

(

ω

δ ω ςe

)

(52)
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where the indices nl have been, for simplicity, omitted. As one can see, if
Ap = 0, i.e. if

E p l= + +ω( / )3 2 (53)

then ap+1 = ap+2 = ··· = 0 while ai with i ≤ p fulfill the appropriate set of ho-
mogeneous linear equations.

First let us consider the case of a spherical harmonic oscillator, i.e. the
case of ζ = re = 0. The recurrence relations (51) split to two independent
sets: One set for i = 2j + 1 and the other one for i = 2j, with j = 0, 1, 2, ... .
Since Ci ≠ 0, the only solution of the first set: C1a1 = 0, A1a1 + C3a3 = 0,
A3a3 + C5a5 = 0, ..., is a1 = a3 = a5 = ··· = 0. The second set of the recurrence
relations reads:

A a C aj j j j2 2 2 2 2 2 0+ =+ + . (54)

If Ap ≡ A2n = 0, i.e. if

E n l= + +ω( / )2 3 2 (55)

then the recursion terminates with a2n+2 = a2n+4 = ··· = 0 and

a

a

C

A
j j l

m n j
jj

j

j

j

2

2 2

2 2

2

1 3 2
0 1

+

+= − = − + + +
−

=( )( / )
( )

, , , ..
ω

. , n − 1 . (56)

In this case the condition which determines energies of the stationary
states, i.e. Eq. (55), is sufficient to determine the coefficients of the poly-
nomial (49) and, consequently, all solutions of the radial Schrödinger
equation.

The case of Bi ≠ 0 is essentially different. Though setting Ap = 0 terminates
the recurrence, it is not enough to determine the coefficients of Pnl(r). In-
deed, let us take p = 0. Setting A0 = 0 implies E = ω(l + 3/2), a1 = a2 = ··· = 0
and B0a0 = 0. Then, a0 ≠ 0 if B0 = 0, i.e. if

ζ ω= +r le ( )1 . (57)

The corresponding wavefunction

φ ω
0

0 1 22

l
p l m r rr r e( ) ( ) /( ) ~= + − − e (58)
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is nodeless, i.e. it corresponds to the ground state (n = 0). For p = 1, A1 = 0
implies E = ω(l + 5/2) and a2 = a3 = ··· = 0. Coefficients a0 and a1 fulfill the
following set of equations:

m r l l

r l

a

a

δ ω ζ
ω δ ω ζ

( ( ) )

( ( ) )
e

e

+ − +
+ −













=
1 1

2
00

1

. (59)

Non-zero solutions exist if

ω ω ζ ω ζ( ) [ ( ) ][ ( ) ]l m r l r l+ = + − + −1 1 2e e (60)

i.e. if the parameters of the radial equation are related in a specific way. The
corresponding wavefunction reads

φ ω
nl

p l m r rr br r e( ) ( ) /( ) ~ ( )= + − −+1 1 21
2

e (61)

where b = a1/a0 = δω/[ζ – ωre(l + 2)] and n = 0 if b > 0 (nodeless function) or
n = 1 if b < 0. Similar, but more complicated analytical solutions may be de-
rived for p = 2, 3, ... .

The case of re = 0, corresponding to a pair of particles interacting by
Coulomb forces and confined in a harmonic oscillator potential, deserves a
special attention. As one can see from Eq. (57), if re = 0 then the analytical
solutions for p = 0 exist only if ζ = 0. These solutions exist for an arbitrary ω
and correspond to a spherical harmonic oscillator. For p = 1 instead of con-
dition (60) we have

ω ζ=
+

m
l

2

1( )
(62)

and b = δmζ/(l + 1). Thus, if the Coulomb interaction is repulsive (as it is
in harmonium) then b > 0 and the wavefunction (61) is nodeless. Thus,
it describes the ground state. If it is attractive (as it is in the confined
positronium) then b < 0 and the wavefunction has a node at r = –1/b. Thus,
it describes the first excited state. Explicitly, the radial wavefunction for
p = 1 is given by

φ δ ζ ζ( ) ~
( )

[ / ( )]r r
m

l
r el m l r+ − ++

+






1 2 11
1

2 2 2

. (63)

If we remember that in the case of three- and four-particle systems r has
to be replaced by the interparticle distance r12, Eq. (63) gives the exact r12-
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dependence of the wavefunction. In particular, by setting ζ = 1, l = 0 and
m = 1/2 (the reduced mass of two particles of unit mass) one can easily ex-
tract from Eq. (63) the celebrated 1 + r12/2 term of Kato20. Another interest-
ing feature of the Hooke atoms is an interplay between the effects of the
electron correlation and the effects of spacial confinement, i.e. between the
influence of ω and ζ on the form of the wavefunction and on the structure
of the spectrum. A detailed analysis5 leads to the conclusion that, in har-
monium, there are two different regimes: Low correlation (if ω > ζ) and
high correlation (if ω << ζ). Plots of the ground state densities for different
values of the interaction parameters are shown in Fig. 3. As one can see,
with increasing correlation the maximum of the density is shifted towards
larger values of r, i.e. towards larger distances between the particles.

FINAL REMARKS

The Schrödinger equation for a systems of particles in which disjoint pairs
interact by arbitrary two-particle potentials while the remaining interac-
tions are described by harmonic oscillator potentials proved to be separa-
ble. Among special examples of this model the ones known as the Hooke
atoms and the Hookean molecules are particularly interesting in the con-
text of quantum-chemical applications. As a result of the separation of the
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FIG. 3
The dependence of the radial density distribution in the ground state (n = l = 0) on the param-
eters of the Hamiltonian in Eq. (45). In all cases re = 0. Left panel: m = 1/2, ω = 2. Right panel:
m = 1/2, ζ = 0 (thick line – in this case the same curve corresponds to all values of ω) and ζ = 1
(thin lines); three values of ω correspond to high, medium and low correlation regime of har-
monium



pertinent many-particle Schrödinger equations all these cases are reduced
to a set of spherically-symmetric one-particle eigenvalue equations. For a
large set of physically interesting interaction potentials the corresponding
radial equations are either exactly or quasi-exactly solvable. Their analysis,
apart of the academic curiosity, supplies interesting data on the nature of
various schemes of separability. In particular, it allows for an analysis of the
electron correlation problems and of the nature of the Born–Oppenheimer
approximation from a new perspective.
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